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Abstract—There are multiple widely-used field bus systems for
smart buildings with notable security deficiencies versus attackers
with physical access to the structure. As there are significant
hurdles and costs associated with refitting those systems using
cryptographic security, we propose a method of protection
through physical-layer intrusion detection. Our implementation
is able to identify previously unknown rogue devices through
their electrical signatures. To achieve that we implement different
models based on autoencoders, a machine-learning concept which
can be used for anomaly detection.

Index Terms—Intrusion detection, physical layer security.

I. INTRODUCTION

Fieldbuses connect sensors and actuators with controllers
in many areas of automation, e.g. in industrial and building
automation, aka. operational technology [1]. Unfortunately, the
systems currently in use have several security issues [2] and
have been shown to be easily compromised due to a lack of
cryptographic safeguards [3]. Most protocols used at fieldbus
level are ancient. Update paths towards more secure protocols
are often impossible. The systems were thought of as being
insular and unconnected to a wider internet, thereby secure.
Today, gaining remote access to an unsecured system can be
as easy as popping off a light switch in an unseen place and
plugging in an internet-connected device with a compatible
bus interface.

Prior research has shown promising results in the develop-
ment of intrusion detection systems [4] for fieldbuses. [5] sug-
gests the physical layer (PHY) of fieldbuses holds promise for
uniquely identifying devices by the electrical characteristics
of their communication signals, not unlike a voiceprint iden-
tification. The PHY intrusion detection system (IDS) would
need to be trained for the physical layer characteristics of any
number of known devices in the network and raises an alarm
if any bus signals are sufficiently different from the known set
of devices. What makes this challenging is the fact that we do
not know what “different” exactly means in this context, i.e.
we have no universal metric to establish a distance between
two physical-layer measurements. The only assumptions we
can safely make is that the operators know which devices are
supposed to be in the network and that the IDS has sufficient
opportunity to “learn their voice.”

Given all that, machine learning techniques which can
operate on mostly raw measurements, learn a model for a
given device and then classify something as an in- or outlier
are a reasonable choice. Specifically, autoencoders in different
variants have recently been used for anomaly detection. The
general idea is a multi-layered neural network which is trained

to reconstruct its own input at its output. At first glance this
sounds a bit counter-intuitive but the application as an anomaly
detector arises from the fact that an autoencoder is able to
reconstruct those inputs which are similar in some way to the
training data better than others. It is also worth mentioning
that the training process only uses data labeled as normal.
This makes it very suitable for IDS applications as not all
classes of anomalies may be known in advance.

II. RELATED WORK

In the area of network anomaly detection, some research has
been done on the use of autoencoders, but based on derived
upper layer features rather than physical layer measurements.
In 2018, Chen et al. have found conventional and convolutional
autoencoder models to outperform earlier methods of detecting
anomalies within the NSL-KDD dataset [6][7].

In [8], Farahnakian and Heikkonen present their implemen-
tation of autoencoders with multiple hidden layers for attack
detection. Their implementation performed similarly well as
the one above. The used data set consists of derived features
as well. Another interesting use of autoencoders is presented
in [9] by Marchi et al. In their work, the authors implement an
acoustic novelty detector. This means, given a current input,
their model has learned to predict the next samples. If those
differ significantly from the real new data, an event is detected.

III. IMPLEMENTATION

As indicated in the first section, our final aim is the imple-
mentation of a physical-layer IDS that can be transparently
added to existing fieldbus installations. For this work, we
have developed an experimental measurement interface for the
widely-used KNX building automation fieldbus and multiple
anomaly detection models using digital signal processing and
autoencoders.

A. KNX Technical Background

KNX is a fieldbus system standard used by smart build-
ings [10]. While the standard includes a number of different
transport media, the most common one is KNX over twisted-
pair wiring or KNX-TP [11]. The physical layer defines a
resting potential of about 30 V which is used to power smaller
bus devices. This resting potential is interpreted as either an
idle bus or a logical one. A sending device may generate a
logical zero by pulling the bus voltage lower by more than 6 V
for exactly 35 us. After that a choke coil within the bus power
supply will cause the voltage to swing above and then decay
back to the resting potential. Overall, this takes 104 us/bit



Fig. 1. Schematic diagram of the KNX-to-ADC attenuation and input buffer
stage.

Fig. 2. Prototype device.

or (9600 bit/s)_l. An example measurement can be seen in
figure 4a.

B. Hardware

As we intend for our work to be used in add-on devices
for existing networks, cost and required effort are factors
to be considered here. While it is possible to gather usable
physical layer data using a digital oscilloscope [5], cost is
prohibitive and the correct use of such equipment is non-
trivial. For our setup we decided on working with low-cost
microcontrollers and their integrated analog-to-digital convert-
ers (ADCs). Specifically, we opted to use the STM32F401CC
by ST Microelectronics [12]. Its internal ADC is capable of a
2.4 MHz sampling rate at a resolution of 12 bit/sample. The
complete circuit can be seen in figure 1. Using this input stage,
we can achieve very fine-grained measurements over the full
voltage range of the KNX signal. The device is depicted in
figure 2.

C. Anomaly Detection Models

On the software side, we have implemented four distinct
models, three of them based on the autoencoder concept and
one, the so-called “Naive Model” based only on correlation
between the measurement and a “trained” average. For easy
implementation, we used Python with the Keras/Tensorflow
libraries.

Originally, we included the Naive Model only as a compar-
ison point not based on machine learning (ML) to verify that
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Fig. 3. Signal processing block diagram of the combined model.

ML indeed brings an improvement. Nevertheless, at the end
we also included it within a 5th model intended as a sort of
combined “super-model” as it yielded a small but measurable
gain in accuracy.

All models share a common signal pre-processing part
visible in figure 3. Essentially, all new inputs are cross-
correlated with a known pre-measured reference signal. The
reference is a constant part of an expected response to a serial
number request each device gets sent by us. The intention here
is to filter out spurious triggers by the ADC and to make sure
all measurements are properly overlayed.

The autoencoder models all return a reconstruction loss L
when presented with a sample. During training we set a thresh-
old value 6 which is equal to the maximum L encountered
for any training sample after the training has concluded. This
means there are by design no false positive classifications in
the training set and also the false positive rate within the test
set should be low to none if everything works as expected.
Unless stated we use ReLU as the activation function for the
hidden layer and the sigmoid function for the output.

1) Naive Model: Test data is then cross-correlated against
it and the maximum correlation max(r) is the output akin to
the reconstruction loss of the autoencoders, just that higher
means more similar in this case. Accordingly, a test sample
needs to score lower than the set threshold 6, to be classified
as an anomaly.

2) Simple Autoencoder: Our first and simplest autoencoder-
based model consists of just 3 densely-connected neural net-
work layers. The input and output layers have the same size as
the input which in our measurements is always 13312 samples.
The inner hidden layer has size 128, sizably reducing the
dimensionality.

3) Multi-layer Autoencoder: The multi-layer autoencoder
implementation consists of the in- and output layer as
above but now with 5 hidden layers. All layers are again
densely connected. The sizes of the hidden layers are
{128, 64, 32,64, 128} from in- to output.

4) Spectrum Autoencoder: We also implemented an au-
toencoder model that would normally be used as an image
anomaly detector to feed it spectrograms of the measurements,
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(b) Measurement plotted as a spectrogram.

Fig. 4. An example measurement from device 1.2.1.

similar to the acoustic novelty detection in [9]. The spectro-
gram is likewise generated by performing many short Fourier
transforms on the input. Furthermore we applied logarithmic
scaling and a normalization to the interval [0, 1] before feeding
the resulting image into the autoencoder. The dimensions of
the spectrograms given a 13312-sample input at 2.4 MHz are
59 x 129 x 1 padded to 64 x 144 x 1. An example of such a
spectrogram input can be seen in figure 4.

5) Combined Model: During the experimental tests of our
models (see next section) it became clear that while there
were clear differences in performance between the models,
there were certain devices where an otherwise weaker model
was outperforming all others. As we also set the anomaly
detection threshold generously enough that false positives did
occur only very infrequently, this gave us an opportunity to
easily combine all the models into a better performing whole.
As shown in figure 3, the Combined Model simply contains
all other models in parallel running their binary outputs into
a logical-OR. So, prosaically this means a signal is classified
as an anomaly if and only if at least one of the other models
classifies it as one.
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Fig. 5. The accuracy of all tested models for each device and on average.

IV. EXPERIMENTAL RESULTS

The finished setup has been experimentally tested on real-
world data gathered by us from a single-room building au-
tomation installation consisting of 16 devices. The room and
the installed equipment were and are currently in productive
use. We used our hardware to gather 480 measurements of
the same identification response telegram from each device,
resulting in 7680 measurements total. Each one consists of
13312 samples or 5.55 ms of the bus voltage signal.

For evaluation purposes we trained a classifier for each
device and model. In every case we classified the training
device as the only known and non-anomalous device, all other
samples were labeled as anomalies and only presented as test
data. To build a classifier for the whole network from this, a
logical-AND between the outputs of the trained classifiers for
the known “good” devices would suffice.

We split the data for each device in 120 test and 360 training
samples using the same randomization seed each time, to make
sure the test samples of one model are not used as training
samples for another which could potentially introduce a bias.
As a result each model gets 360 “good” measurements of
its own device for training and 1920 pieces test data from
all devices. Ideally the classifier should then detect 1800
anomalies and 120 known signals.

Each single autoencoder model was trained for 100 epochs
with a batch size of 40 using Adaptive Moment Estimation
(Adam) for optimization and mean squared error as the loss
function.

The plot in figure 5 shows the prediction accuracy for each
model and training device, as well as an overall average. Note
that the naming stems from KNX hierarchical addresses the
devices are using for communication. Though, in this case the
given addresses have been altered from their real addresses
for data protection reasons as the installation is in active use.
As mentioned before, the rate of false positives, meaning a
known signal classified as an anomaly, is consistently very
low even in the more aggressive Combined Model. In fact, the
highest false positive rate encountered in all classifiers was 5
of 120 in the Combined Model for device 1.2.5. On average,
the Combined Model classified 2.0625 false positives of 120
negative test measurements. All other models scored better in



TABLE I
THE AVERAGE ACCURACY OF THE TESTED MODELS

N. Mdl.
0.289

Sim. AE  M.-L. AE
0.455 0.448

Spect. AE Comb. Mdl.
0.732 0.795

this regard—which is expected—because the Combined Model
is the worst-case for false positives caused by the logical-OR.

What this means for the results plot is that the accuracy
here is in every case dominated by and approximately equal
to the true negative rate. In more prosaic terms, the higher the
accuracy, the more “bad” signals are detected as such.

There are a few key points to take away from the results in
figure 4. Firstly, autoencoders clearly and consistently have
an edge versus the trivial correlation approach. Secondly,
while the Spectrum Autoencoder is a clear winner versus
the other single models overall, there are special cases with
some devices where it does not seem so clear. As we took
a closer look inside the data, we realized that the results of
the different models were often complementary. There are
situations where one model clearly performs best on average
but another one is actually better at detecting specific devices
as anomalies. This is where the Combined Model comes into
play. As we can see in table I, the increase in accuracy versus
the Spectrum Autoencoder by itself is sizable. In summary,
both the Spectrum Autoencoder and of course the Combined
Model deliver a very usable performance that could well be
leveraged for physical layer intrusion detection.

V. CONCLUSION AND FUTURE WORK.

In this work we introduced the use of autoencoder-based
machine-learning models for physical layer security. Further-
more, we subjected our models to comprehensive experi-
mental tests using real-world data gathered using hardware
which could conceivably be deployed “in the field” without
much associated cost. The results validate our assumption
that autoencoders operating on physical layer data can be
a significant part of a capable IDS system for fieldbuses.
That said, the results also show that the detection rate is
good but by no means perfect. To improve on that, it seems
sensible to combine our physical layer approach with IDS
models operating on higher OSI-layers. Given our final aim of
developing a kind of “plug-and-play” IDS, it would also make
sense to look into the miniaturization and simplification of the
software side. It is conceivable that given enough tuning and
compression, the models could be sufficiently reduced to be
feasibly deployable on lightweight computing devices.
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